Interés privado en la investigación con datos de salud.

La digitaP_20190418_141737lización de los servicios sanitarios está generando un volumen de datos sin precedentes, tanto para la atención sanitaria como para su uso secundario. Este uso secundario ha despertado un gran interés en empresas sanitarias y tecnológicas, ante la posibilidad de desarrollar, mediante inteligencia artificial, nuevos medicamentos, dispositivos sanitarios y algoritmos de toma de decisiones, de gran impacto económico. Hay que destacar que el sector salud es prioritario en las estrategias gubernamentales de inteligencia artificial, para cuya ejecución se necesitan grandes volúmenes de datos.

El tratamiento de estos grandes volúmenes de datos plantea desafíos tecnológicos, metodológicos, organizativos, de seguridad, calidad y disponibilidad de los mismos; no obstante, se considera que los mayores retos son los éticos y de gobernanza. Tal es así, que la consultora Gartner incluyó la “Ética digital y privacidad” entre las 10 tendencias tecnológicos estratégicas para 2019 al mismo nivel, por ejemplo, que la “Computación cuántica”.

Hay que tener en cuenta que cuestionamientos éticos han abortado iniciativas gubernamentales como Care data del National Health Service (NHS) o el VISC+ en Cataluña, o incluso iniciativas de open data como la historia clínica electrónica en Australia o el CMBD en la Comunidad de Madrid (por problemas de posible reidentificación de datos anónimos). Por otra parte, el interés de las grandes corporaciones (Google, Microsoft, Amazon, Facebook y Alibaba) por los datos de salud está cada vez más cuestionado, con varios procesos judiciales en marcha; este interés se ha concretado en proyectos de colaboración tanto con centros privados, como con centros y servicios públicos de salud.

Los retos éticos y de privacidad que plantea el uso de datos masivos parecen ser mayores en su uso secundario en investigación (aunque es un uso legítimo) que, en su uso secundario en salud pública, planificación, evaluación o gestión. La investigación clínica sigue unos procedimientos muy consolidados, garantizándose la autonomía de las personas mediante el consentimiento informado. Igualmente ocurre, hasta ahora, en la investigación a partir de bases de datos, en la que no se solicita el consentimiento informado a cada una de las personas participantes, pero sus derechos están garantizados mediante procesos de anonimización de datos con los que no es posible la identificación de las personas.

El escenario de la investigación en salud a partir de bases de datos ha cambiado radicalmente con el big data:

  • Ha caído el paradigma de la anonimización, pues con la metodología y datos adecuados, es posible la reidentificación de personas en bases de datos en principio anonimizadas. Además, se ha diluido la frontera de lo que son datos de salud, dado que estos se pueden inferir a partir de otros que no lo son.
  • Los datos sanitarios (estructurados y no estructurados) han adquirido una magnitud y complejidad sin precedentes.
  • Su tratamiento requiere grandes infraestructuras y desarrollos metodológicos, que están concentrados en unas pocas grandes corporaciones; ellas y no los gobiernos o instituciones son las que poseen el conocimiento. Es en esas grandes corporaciones en las que se concentran la mayoría de los científicos de datos.
  • Consecuencia de lo anterior, muchas iniciativas se basan en colaboración publico/privada.
  • El desarrollo de la inteligencia artificial ofrece unas posibilidades antes impensables, y puede ayudar a la investigación sanitaria, pero el espectro de sus efectos no es del todo conocido, lo que genera incertidumbre.
  • El interés y beneficio económico de los datos no tienen precedente y las posibilidades de tomar decisiones sobre las personas y predecir e influir en sus conductas, son reales.
  • La gobernanza de los datos es cada vez más compleja, asimilándose a la gobernanza de la propia organización, con el agravante de que en ocasiones el mayor conocimiento de los propios datos está fuera de la organización.

Las expectativas sobre la aportación de soluciones del big data para mejorar la salud de la población y la gestión adecuada de los servicios sanitarios eran tan elevadas, que en un principio no se valoró suficientemente que se podría lesionar el principio de beneficencia. Igualmente, hasta fechas recientes no se ha empezado a tomar conciencia de las posibles lesiones al principio de maleficencia, en la medida en la que se han ido conociendo los sesgos de las aplicaciones de inteligencia artificial. Esto llevará a un mayor interés por la trasparencia acerca de cómo funcionan los algoritmos.

Hasta ahora los mayores debates se están produciendo en torno a la privacidad, en un escenario en el que por una parte los gobiernos fomentan el uso secundario de los datos sanitarios anonimizados gestionados por las administraciones públicas (iniciativas de open data), mientras que, como se ha indicado, por otra parte sabemos que la anonimización no garantiza la privacidad. En los primeros proyectos que las empresas desarrollaron con los servicios sanitarios, solicitaban copias completas de las bases de datos (anonimizadas); hoy sabemos que estas peticiones son incompatibles con el principio de minimización de datos del RGPD. Existen alternativas que permiten el análisis de los datos sin que estos salgan de su entorno natural (en nuestro caso el sanitario); entre estas alternativas nos encontramos con las bases de datos federadas, en las que los datos no salen de su entorno natural aplicando sobre ellos los cálculos, saliendo del sistema los resultados, pero no los datos originales. Igualmente, a partir de machine learning, se ha propuesto la generación y utilización de pacientes simulados generados a partir de datos de pacientes reales; otro enfoque es la creación de isopacientes tipo. En otros ámbitos igualmente sensibilizados con la privacidad como son los órganos estadísticos, están buscando nuevas fórmulas que compatibilicen la difusión de datos con garantías de privacidad.

Así pues, existen metodologías que previsiblemente permitirán la utilización de datos sanitarios en investigación garantizando la privacidad de los pacientes. Pero aun así persistirán otros problemas a mi juicio no suficientemente tratados, relacionados con el principio de justicia, en particular el tratamiento de datos de servicios públicos de salud en investigación sanitaria por parte de empresas farmacéuticas y tecnológicas.

El Reglamento General de Protección de Datos (RGPD) no introduce modificaciones substanciales en cuanto a la posibilidad de tratar estos datos en investigación; se permite su uso secundario en determinadas circunstancias sin solicitar consentimiento informado de la persona interesada, pero con unos principios y requisitos definidos, con un tratamiento de los datos proporcional al objetivo perseguido, respetando en lo esencial el derecho a la protección de datos y estableciendo medidas adecuadas y específicas para proteger los intereses y derechos fundamentales de las personas.

En la práctica, esto se resume en que haya un protocolo de investigación y una evaluación de impacto en protección de datos, que cuenten con un dictamen positivo de un comité de ética de investigación, obedezcan al interés público y que los responsables del proyecto estén en condiciones de cumplir y poder demostrar que están cumpliendo el RGPD. La investigación que se realiza en centros públicos y con financiación pública no es previsible que plantee problemas en cuanto a la decisión de autorizar este tipo de tratamiento de datos, al ser investigación que responde al interés público.

Los problemas se plantean en el tratamiento de estos datos en la investigación, innovación, desarrollo etc de ámbito, financiación o colaboración privados pues, aunque estuvieran garantizada la privacidad con los métodos arriba indicados, seguirían presentándose posibles daños colectivos que afectan al principio de justicia. La población es favorable a que sus datos sean usados en la investigación sanitaria, pero es reticente a su uso por parte de la industria.

Surgen así preguntas del tipo:

  • ¿Puede un organismo público transferir datos para investigación a entidades con finalidad lucrativa?
  • Puede una investigación de o para una entidad privada, ser de interés general? ¿En qué condiciones?
  • ¿Hasta qué punto la fabricación de un fármaco contribuye al bien común o al bien económico de la industria?
  • ¿Puedo vender mis datos sanitarios? (son parte de mi persona, como un órgano). ¿Y una institución pública?
  • ¿Puede haber acuerdos justos entre algunas corporaciones y los organismos públicos dada la asimetría tecnológica a favor de las corporaciones?
  • ¿Pueden los servicios públicos de salud ceder o vender datos se salud a compañías que van a generar un producto o servicios que posteriormente vendan o alquilen a esos servicios públicos o a las personas que contribuyeron a su desarrollo cediendo altruista y anónimamente sus datos? ¿En qué condiciones?
  • ¿Pueden los servicios públicos de salud ceder o vender datos se salud a compañías cuyo objeto principal es el tecnológico y no el sanitario? ¿Dónde está el límite del interés sanitario y el tecnológico? ¿Qué implicaciones regulatorias tiene?

Vivimos una situación en la que no hay una respuesta fácil a estas preguntas y que exige un análisis desde el principio de justicia, valorando la equidad en la distribución de cargas y beneficios.  Además, es preciso no olvidar que:

  • El proceso ha de ser transparente.
  • Debe de haber una participación informada de la sociedad en este debate.
  • El objetivo de la investigación debe ser relevante para la comunidad de la que proceden los datos.
  • Los resultados del tratamiento de datos deben revertir en las personas o instituciones que los han aportado.
  • Los intereses de las personas e instituciones públicas que comparten sus datos deben de estar por encima de los intereses de la industria.
  • Las instituciones pueden estar en una situación de vulnerabilidad respecto a las grandes corporaciones.
  • Posible sesgo de los algoritmos desarrollados con datos de otro contexto al aplicarlos a nuestro medio.

(Una versión previa debeste documento fué presentada en las Jornadas GRX Health Data. EASP. 14Noviembre 2.019) 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s